In a next step we also analyzed MAIT cell frequencies in 7 patients longitudinally before and after HCV therapy. In analogy to our previous results in HIV patients who were started on antiretroviral therapy (ART) we also did not see a recovery of the MAIT cell frequencies upon initiation of HCV therapy (Fig. 1C). Further studies will need to evaluate whether these cells need longer time to recover after successful HCV therapy [9].

To our knowledge, an analysis of MAIT cell frequencies in HCV mono-infection in parallel with HCV/HIV co-infection has not been performed before. While we see a slight deterioration of MAIT cells in HCV, not surprisingly we see a trend of even more profound depletion in ART-treated HIV mono-infected and ART-treated HIV/HCV co-infected patients. One hypothesis is that immune activation due to microbial translocation [8,10] is further aggravated by global lack of MAIT cells which might be a fundamental mechanism by which HIV accelerates progression of chronic liver disease and HCV infection [7].

Further phenotypic and functional studies are required to confirm our results. Most importantly, we note that studies of intrahepatic MAIT cell phenotype and frequency in different liver diseases, HIV mono-infection or sepsis are largely missing. These future studies should then also correlate MAIT cell frequencies with clinical parameters, liver histology (grading and staging) and the stage of the liver disease as well as with laboratory markers of microbial translocation [9].

Conflict of interest

The authors who have taken part in this study declared that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Acknowledgements

JSzW and AWL are supported by the German Center for Infection (DZIF), Hamburg site and the German research agency (DFG SFB 841 project A6). JME and JSzW are part of the Epistem, EHVA and ECHAM (Hivera) consortium.

References

JOURNAL OF HEPATOLOGY

The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans

To the Editor:

We have recently shown in 125 subjects that insulin resistance and the PNPLA3 I148M gene variant, two common risk factors of NAFLD, are characterized with markedly different content and composition of lipids in the human liver [1]. In 2015, a variant in membrane bound O-acyltransferase domain containing 7 (MBOAT7) at rs641738 was discovered to increase the risk of alcohol-related cirrhosis [2]. This variant was also shown to increase
Letters to the Editor

the risk of steatosis and histologic liver damage in NAFLD, independent of obesity [3]. The variant allele was common with a population prevalence of 58–67% and characterized by decreased hepatic gene and protein expression of MBOAT7 [3]. MBOAT7 is also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1), which catalyzes acyl-chain remodeling of phosphatidylinositolositolositol (PIs) [4]. Consistent with this function, plasma lipidomics analyses showed that amongst various lipid classes (triglycerides, cholesterol esters, phospholipids, ceramides and sphingomyelins), only concentrations of PIs were altered [3]. Specifically, plasma concentrations of PI (36:4), PI (38:3) and PI (38:5) were decreased in proportion to the number of MBOAT7 variant alleles, while most other PIs were increased [3].

To study effects of genetic variation in MBOAT7 on human liver histology and lipidome, we genotyped the subjects in our previous study at rs641738 [1]. The subjects were consecutive patients undergoing bariatric surgery recruited using the inclusion and exclusion criteria described in [1]. The liver lipidome was analyzed using ultra-high performance liquid and gas chromatography combined with mass spectrometry and histology as described [1]. DNA was available from 115 subjects (age 48.0 ± 0.8 years, BMI 45.4 ± 0.5 kg/m², 67 % women), who were divided into three groups based on their MBOAT7 genotype at rs641738 (n = 35 for CC, n = 60 for CT, n = 20 for TT).

The MBOAT7 genotype groups were similar with respect to age, gender, BMI, waist circumference, PNPLA3 I148M and TM6SF2 E167K genotypes (data not shown).

The MBOAT7 genotype groups were similar with respect to age, gender, BMI, waist circumference, PNPLA3 I148M and TM6SF2 E167K genotypes (data not shown). Steatosis (% of grades 0/1/2/3 were 23/60/3/14, 25/62/12/2 and 20/55/25/0, p = 0.03 in CC, CT and TT groups) and necroinflammatory (% of grades 0/1/2/3 were 74/26/0/0, 87/13/0/0 and 50/50/5/0, p = 0.04) grades differed significantly between the MBOAT7 groups. The prevalence of significant fibrosis (F2–4) increased with number of MBOAT7 variant alleles (0 vs. 5 vs. 25 %, p = 0.001, Fig. 1). Of 7 different PIs in the human liver, PI (36:4) and PI (38:3), i.e., the same PIs as in the plasma in the study of Mancina and Dongiovanni et al. [3], decreased significantly as a function of the number of MBOAT7 variant alleles, while the concentration of PI (40:5) increased (Fig. 1). All other lipid classes in the human liver (triglycerides, cholesterol esters, ceramides, sphingomyelins, hexosylceramides, phospholipids, and free fatty acids) were similar between the groups (data not shown). Fasting insulin (13.7 [8.4–17.1], 11.2 [6.5–18.3] and 12.3 [7.0–18.8] mU/L in CC, CT and TT groups), glucose (5.9 [5.0–6.6], 5.8 [5.4–6.6]) and 5.7 [5.1–6.1] mmol/L), triglycerides (1.24 [1.06–1.55], 1.29 [0.91–1.69] and 1.08 [1.00–1.59] mmol/L), HDL (1.15 [0.98–1.33], 1.09 [0.93–1.38] and 0.98 [0.86–1.13] mmol/L) and low density lipoprotein (2.5 [1.9–3.4], 2.3 [1.7–2.9] and 2.4 [1.5–3.5] mmol/L) cholesterol concentrations were similar between the groups.

We thus replicate effects of the MBOAT7 variant rs641738 on human liver histology with respect to steatosis and necroinflammation, and an increased prevalence of significant fibrosis [3]. The latter is the key predictor of overall mortality, liver transplantation, and liver-related events [5,6].

PIs are lipids, which regulate membrane dynamics and signal transduction pathways [4]. They consist of a glycerol backbone and two variable fatty acyl-chains, of which one is predominantly saturated and the other polyunsaturated [4]. MBOAT7 participates in acyl-chain remodeling of PIs in the Lands’ cycle, in which it incorporates a polyunsaturated fatty acyl-chain into a PI [4]. In mice, knockout of LPIAT1, i.e. MBOAT7, affects concentrations of hepatic polyunsaturated PIs [7]. Another enzyme of the MBOAT family, MBOAT5, participates in the acyl-chain remodeling of phosphatidylcholines [8]. Knockout of MBOAT5 in mice decreases arachidonic acid-containing phosphatidylcholines in the liver and increases the risk of hepatic steatosis and inflammation [8]. MBOAT7 deficiency is thus predicted to increase free polyunsaturated fatty acids [9] and their proinflammatory metabolites, which are increased in plasma of subjects with non-alcoholic steatohepatitis [10]. Detailed understanding of the mechanisms via which the altered hepatic phosphatidylinositol metabolism leads to liver fibrosis are thus of considerable interest.

In conclusion, we confirm that the common variant in MBOAT7 rs641738 associates with histologic liver damage, particularly significant fibrosis. We extend previous data by showing that altered polyunsaturated PI metabolism characterizes the human liver in carriers of the MBOAT7 variant. These data are consistent with recent data in plasma and a role for MBOAT7 in hepatic phosphatidylinositol remodeling [3].

Fig. 1. Prevalence of significant fibrosis and hepatic concentrations of phosphatidylinositol PIs (40:5), PI (36:4), and PI (38:3) in groups according to the MBOAT7 genotype at rs641738. Data are in % and median (25th–75th percentile), and were tested using Pearson’s χ² test, Kolmogorov-Smirnov test and Mann-Whitney U test, as appropriate. * p < 0.05, ** p < 0.01.

Financial support

This study was supported by research grants from the Academy of Finland (HY), EU H2020 EPoS 634413 (HY), the Sigrid Juselius (HY) and EVO (HY) Foundations.

Conflict of interest

The authors who have taken part in this study declared that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.
Establishing the independence and clinical importance of non-alcoholic fatty liver disease as a risk factor for cardiovascular disease

To the Editor:
The evaluation of the nature of the association between non-alcoholic fatty liver disease (NAFLD) and cardiovascular risk has been the topic of a number of reports. There is emerging consensus that NAFLD is positively correlated with increased cardiovascular risk and several groups have indicated that this is independent of known risk factors [1]. The importance of this association is underlined by the observation that cardiovascular disease is a leading cause of death in individuals with NAFLD [2,3].

To further illuminate this topic two recent papers have been published in the Journal of Hepatology. The first of these comes from the LIDO Study Group and assesses the impact of hepatic steatosis on the incidence and development of carotid atherosclerosis. The second comes from the LIDO Study Group and assesses the impact of hepatic steatosis on the incidence and development of carotid atherosclerosis. The first of these comes from the LIDO Study Group and assesses the impact of hepatic steatosis on the incidence and development of carotid atherosclerosis. The second comes from the LIDO Study Group and assesses the impact of hepatic steatosis on the incidence and development of carotid atherosclerosis.

References